Reply To: Using ZeroShell for Cisco Radius Authentication

Home Page Forums Network Management ZeroShell Using ZeroShell for Cisco Radius Authentication Reply To: Using ZeroShell for Cisco Radius Authentication

#45773

ptaylor
Member

I only changed one file:

/root/kerbynet.cgi/template.cfg/radiusd.conf

There are really just a few minor changes.

I’d rather upload it, but since I don’t see a way to do so in the forum, here goes nothing. Let me know if there is another way you’d like me to send the file.

/etc/raddb/radiusd.conf
##
## radiusd.conf — FreeRADIUS server configuration file.
##
## http://www.freeradius.org/
## $Id: radiusd.conf.in,v 1.188.2.4 2005/06/11 22:20:40 nbk Exp $
##

# The location of other config files and
# logfiles are declared in this file
#
# Also general configuration for modules can be done
# in this file, it is exported through the API to
# modules that ask for it.
#
# The configuration variables defined here are of the form ${foo}
# They are local to this file, and do not change from request to
# request.
#
# The per-request variables are of the form %{Attribute-Name}, and
# are taken from the values of the attribute in the incoming
# request. See ‘doc/variables.txt’ for more information.

prefix = /usr/local
exec_prefix = ${prefix}
sysconfdir = /etc
localstatedir = /var
sbindir = ${exec_prefix}/sbin
#logdir = ${localstatedir}/log/radius
logdir = syslog
raddbdir = ${sysconfdir}/raddb
#radacctdir = ${logdir}/radacct
radacctdir = /var/log/radius/radacct
# Location of config and logfiles.
confdir = ${raddbdir}
run_dir = ${localstatedir}/run/radiusd

#
# The logging messages for the server are appended to the
# tail of this file.
#
#log_file = /var/log/radius//radius.log
log_file = /dev/null

#
# libdir: Where to find the rlm_* modules.
#
# This should be automatically set at configuration time.
#
# If the server builds and installs, but fails at execution time
# with an ‘undefined symbol’ error, then you can use the libdir
# directive to work around the problem.
#
# The cause is usually that a library has been installed on your
# system in a place where the dynamic linker CANNOT find it. When
# executing as root (or another user), your personal environment MAY
# be set up to allow the dynamic linker to find the library. When
# executing as a daemon, FreeRADIUS MAY NOT have the same
# personalized configuration.
#
# To work around the problem, find out which library contains that symbol,
# and add the directory containing that library to the end of ‘libdir’,
# with a colon separating the directory names. NO spaces are allowed.
#
# e.g. libdir = /usr/local/lib:/opt/package/lib
#
# You can also try setting the LD_LIBRARY_PATH environment variable
# in a script which starts the server.
#
# If that does not work, then you can re-configure and re-build the
# server to NOT use shared libraries, via:
#
# ./configure –disable-shared
# make
# make install
#
libdir = ${exec_prefix}/lib

# pidfile: Where to place the PID of the RADIUS server.
#
# The server may be signalled while it’s running by using this
# file.
#
# This file is written when ONLY running in daemon mode.
#
# e.g.: kill -HUP `cat /var/run/radiusd/radiusd.pid`
#
#pidfile = ${run_dir}/radiusd.pid
pidfile = /tmp/radiusd.pid

# user/group: The name (or #number) of the user/group to run radiusd as.
#
# If these are commented out, the server will run as the user/group
# that started it. In order to change to a different user/group, you
# MUST be root ( or have root privleges ) to start the server.
#
# We STRONGLY recommend that you run the server with as few permissions
# as possible. That is, if you’re not using shadow passwords, the
# user and group items below should be set to ‘nobody’.
#
# On SCO (ODT 3) use “user = nouser” and “group = nogroup”.
#
# NOTE that some kernels refuse to setgid(group) when the value of
# (unsigned)group is above 60000; don’t use group nobody on these systems!
#
# On systems with shadow passwords, you might have to set ‘group = shadow’
# for the server to be able to read the shadow password file. If you can
# authenticate users while in debug mode, but not in daemon mode, it may be
# that the debugging mode server is running as a user that can read the
# shadow info, and the user listed below can not.
#
#user = nobody
#group = nobody

# max_request_time: The maximum time (in seconds) to handle a request.
#
# Requests which take more time than this to process may be killed, and
# a REJECT message is returned.
#
# WARNING: If you notice that requests take a long time to be handled,
# then this MAY INDICATE a bug in the server, in one of the modules
# used to handle a request, OR in your local configuration.
#
# This problem is most often seen when using an SQL database. If it takes
# more than a second or two to receive an answer from the SQL database,
# then it probably means that you haven’t indexed the database. See your
# SQL server documentation for more information.
#
# Useful range of values: 5 to 120
#
max_request_time = 30

# delete_blocked_requests: If the request takes MORE THAN ‘max_request_time’
# to be handled, then maybe the server should delete it.
#
# If you’re running in threaded, or thread pool mode, this setting
# should probably be ‘no’. Setting it to ‘yes’ when using a threaded
# server MAY cause the server to crash!
#
delete_blocked_requests = no

# cleanup_delay: The time to wait (in seconds) before cleaning up
# a reply which was sent to the NAS.
#
# The RADIUS request is normally cached internally for a short period
# of time, after the reply is sent to the NAS. The reply packet may be
# lost in the network, and the NAS will not see it. The NAS will then
# re-send the request, and the server will respond quickly with the
# cached reply.
#
# If this value is set too low, then duplicate requests from the NAS
# MAY NOT be detected, and will instead be handled as seperate requests.
#
# If this value is set too high, then the server will cache too many
# requests, and some new requests may get blocked. (See ‘max_requests’.)
#
# Useful range of values: 2 to 10
#
cleanup_delay = 5

# max_requests: The maximum number of requests which the server keeps
# track of. This should be 256 multiplied by the number of clients.
# e.g. With 4 clients, this number should be 1024.
#
# If this number is too low, then when the server becomes busy,
# it will not respond to any new requests, until the ‘cleanup_delay’
# time has passed, and it has removed the old requests.
#
# If this number is set too high, then the server will use a bit more
# memory for no real benefit.
#
# If you aren’t sure what it should be set to, it’s better to set it
# too high than too low. Setting it to 1000 per client is probably
# the highest it should be.
#
# Useful range of values: 256 to infinity
#
max_requests = 1024

# bind_address: Make the server listen on a particular IP address, and
# send replies out from that address. This directive is most useful
# for machines with multiple IP addresses on one interface.
#
# It can either contain “*”, or an IP address, or a fully qualified
# Internet domain name. The default is “*”
#
# As of 1.0, you can also use the “listen” directive. See below for
# more information.
#
bind_address = *

# port: Allows you to bind FreeRADIUS to a specific port.
#
# The default port that most NAS boxes use is 1645, which is historical.
# RFC 2138 defines 1812 to be the new port. Many new servers and
# NAS boxes use 1812, which can create interoperability problems.
#
# The port is defined here to be 0 so that the server will pick up
# the machine’s local configuration for the radius port, as defined
# in /etc/services.
#
# If you want to use the default RADIUS port as defined on your server,
# (usually through ‘grep radius /etc/services’) set this to 0 (zero).
#
# A port given on the command-line via ‘-p’ over-rides this one.
#
# As of 1.0, you can also use the “listen” directive. See below for
# more information.
#
port = 0

#
# By default, the server uses “bind_address” to listen to all IP’s
# on a machine, or just one IP. The “port” configuration is used
# to select the authentication port used when listening on those
# addresses.
#
# If you want the server to listen on additional addresses, you can
# use the “listen” section. A sample section (commented out) is included
# below. This “listen” section duplicates the functionality of the
# “bind_address” and “port” configuration entries, but it only listens
# for authentication packets.
#
# If you comment out the “bind_address” and “port” configuration entries,
# then it becomes possible to make the server accept only accounting,
# or authentication packets. Previously, it always listened for both
# types of packets, and it was impossible to make it listen for only
# one type of packet.
#
#listen {
# IP address on which to listen.
# Allowed values are:
# dotted quad (1.2.3.4)
# hostname (radius.example.com)
# wildcard (*)
# ipaddr = *

# Port on which to listen.
# Allowed values are:
# integer port number (1812)
# 0 means “use /etc/services for the proper port”
# port = 0

# Type of packets to listen for.
# Allowed values are:
# auth listen for authentication packets
# acct listen for accounting packets
#
# type = auth
#}

# hostname_lookups: Log the names of clients or just their IP addresses
# e.g., http://www.freeradius.org (on) or 206.47.27.232 (off).
#
# The default is ‘off’ because it would be overall better for the net
# if people had to knowingly turn this feature on, since enabling it
# means that each client request will result in AT LEAST one lookup
# request to the nameserver. Enabling hostname_lookups will also
# mean that your server may stop randomly for 30 seconds from time
# to time, if the DNS requests take too long.
#
# Turning hostname lookups off also means that the server won’t block
# for 30 seconds, if it sees an IP address which has no name associated
# with it.
#
# allowed values: {no, yes}
#
hostname_lookups = no

# Core dumps are a bad thing. This should only be set to ‘yes’
# if you’re debugging a problem with the server.
#
# allowed values: {no, yes}
#
allow_core_dumps = no

# Regular expressions
#
# These items are set at configure time. If they’re set to “yes”,
# then setting them to “no” turns off regular expression support.
#
# If they’re set to “no” at configure time, then setting them to “yes”
# WILL NOT WORK. It will give you an error.
#
regular_expressions = yes
extended_expressions = yes

# Log the full User-Name attribute, as it was found in the request.
#
# allowed values: {no, yes}
#
log_stripped_names = no

# Log authentication requests to the log file.
#
# allowed values: {no, yes}
#
#log_auth = yes
log_auth = yes

# Log passwords with the authentication requests.
# log_auth_badpass – logs password if it’s rejected
# log_auth_goodpass – logs password if it’s correct
#
# allowed values: {no, yes}
#
log_auth_badpass = no
log_auth_goodpass = no

# usercollide: Turn “username collision” code on and off. See the
# “doc/duplicate-users” file
#
# WARNING
# !!!!!!! Setting this to “yes” may result in the server behaving
# !!!!!!! strangely. The “username collision” code will ONLY work
# !!!!!!! with clear-text passwords. Even then, it may not do what
# !!!!!!! you want, or what you expect.
# !!!!!!!
# !!!!!!! We STRONGLY RECOMMEND that you do not use this feature,
# !!!!!!! and that you find another way of acheiving the same goal.
# !!!!!!!
# !!!!!!! e,g. module fail-over. See ‘doc/configurable_failover’
# WARNING
#
usercollide = no

# lower_user / lower_pass:
# Lower case the username/password “before” or “after”
# attempting to authenticate.
#
# If “before”, the server will first modify the request and then try
# to auth the user. If “after”, the server will first auth using the
# values provided by the user. If that fails it will reprocess the
# request after modifying it as you specify below.
#
# This is as close as we can get to case insensitivity. It is the
# admin’s job to ensure that the username on the auth db side is
# *also* lowercase to make this work
#
# Default is ‘no’ (don’t lowercase values)
# Valid values = “before” / “after” / “no”
#
lower_user = no
lower_pass = no

# nospace_user / nospace_pass:
#
# Some users like to enter spaces in their username or password
# incorrectly. To save yourself the tech support call, you can
# eliminate those spaces here:
#
# Default is ‘no’ (don’t remove spaces)
# Valid values = “before” / “after” / “no” (explanation above)
#
nospace_user = no
nospace_pass = no

# The program to execute to do concurrency checks.
checkrad = ${sbindir}/checkrad

# SECURITY CONFIGURATION
#
# There may be multiple methods of attacking on the server. This
# section holds the configuration items which minimize the impact
# of those attacks
#
security {
#
# max_attributes: The maximum number of attributes
# permitted in a RADIUS packet. Packets which have MORE
# than this number of attributes in them will be dropped.
#
# If this number is set too low, then no RADIUS packets
# will be accepted.
#
# If this number is set too high, then an attacker may be
# able to send a small number of packets which will cause
# the server to use all available memory on the machine.
#
# Setting this number to 0 means “allow any number of attributes”
max_attributes = 200

#
# delayed_reject: When sending an Access-Reject, it can be
# delayed for a few seconds. This may help slow down a DoS
# attack. It also helps to slow down people trying to brute-force
# crack a users password.
#
# Setting this number to 0 means “send rejects immediately”
#
# If this number is set higher than ‘cleanup_delay’, then the
# rejects will be sent at ‘cleanup_delay’ time, when the request
# is deleted from the internal cache of requests.
#
# Useful ranges: 1 to 5
reject_delay = 1

#
# status_server: Whether or not the server will respond
# to Status-Server requests.
#
# Normally this should be set to “no”, because they’re useless.
# See: http://www.freeradius.org/rfc/rfc2865.html#Keep-Alives
#
# However, certain NAS boxes may require them.
#
# When sent a Status-Server message, the server responds with
# an Access-Accept packet, containing a Reply-Message attribute,
# which is a string describing how long the server has been
# running.
#
status_server = no
}

# PROXY CONFIGURATION
#
# proxy_requests: Turns proxying of RADIUS requests on or off.
#
# The server has proxying turned on by default. If your system is NOT
# set up to proxy requests to another server, then you can turn proxying
# off here. This will save a small amount of resources on the server.
#
# If you have proxying turned off, and your configuration files say
# to proxy a request, then an error message will be logged.
#
# To disable proxying, change the “yes” to “no”, and comment the
# $INCLUDE line.
#
# allowed values: {no, yes}
#
proxy_requests = yes
$INCLUDE ${confdir}/proxy.conf

# CLIENTS CONFIGURATION
#
# Client configuration is defined in “clients.conf”.
#

# The ‘clients.conf’ file contains all of the information from the old
# ‘clients’ and ‘naslist’ configuration files. We recommend that you
# do NOT use ‘client’s or ‘naslist’, although they are still
# supported.
#
# Anything listed in ‘clients.conf’ will take precedence over the
# information from the old-style configuration files.
#
$INCLUDE ${confdir}/clients.conf

# SNMP CONFIGURATION
#
# Snmp configuration is only valid if SNMP support was enabled
# at compile time.
#
# To enable SNMP querying of the server, set the value of the
# ‘snmp’ attribute to ‘yes’
#
snmp = no
#$INCLUDE ${confdir}/snmp.conf

# THREAD POOL CONFIGURATION
#
# The thread pool is a long-lived group of threads which
# take turns (round-robin) handling any incoming requests.
#
# You probably want to have a few spare threads around,
# so that high-load situations can be handled immediately. If you
# don’t have any spare threads, then the request handling will
# be delayed while a new thread is created, and added to the pool.
#
# You probably don’t want too many spare threads around,
# otherwise they’ll be sitting there taking up resources, and
# not doing anything productive.
#
# The numbers given below should be adequate for most situations.
#
thread pool {
# Number of servers to start initially — should be a reasonable
# ballpark figure.
start_servers = 5

# Limit on the total number of servers running.
#
# If this limit is ever reached, clients will be LOCKED OUT, so it
# should NOT BE SET TOO LOW. It is intended mainly as a brake to
# keep a runaway server from taking the system with it as it spirals
# down…
#
# You may find that the server is regularly reaching the
# ‘max_servers’ number of threads, and that increasing
# ‘max_servers’ doesn’t seem to make much difference.
#
# If this is the case, then the problem is MOST LIKELY that
# your back-end databases are taking too long to respond, and
# are preventing the server from responding in a timely manner.
#
# The solution is NOT do keep increasing the ‘max_servers’
# value, but instead to fix the underlying cause of the
# problem: slow database, or ‘hostname_lookups=yes’.
#
# For more information, see ‘max_request_time’, above.
#
max_servers = 32

# Server-pool size regulation. Rather than making you guess
# how many servers you need, FreeRADIUS dynamically adapts to
# the load it sees, that is, it tries to maintain enough
# servers to handle the current load, plus a few spare
# servers to handle transient load spikes.
#
# It does this by periodically checking how many servers are
# waiting for a request. If there are fewer than
# min_spare_servers, it creates a new spare. If there are
# more than max_spare_servers, some of the spares die off.
# The default values are probably OK for most sites.
#
min_spare_servers = 3
max_spare_servers = 10

# There may be memory leaks or resource allocation problems with
# the server. If so, set this value to 300 or so, so that the
# resources will be cleaned up periodically.
#
# This should only be necessary if there are serious bugs in the
# server which have not yet been fixed.
#
# ‘0’ is a special value meaning ‘infinity’, or ‘the servers never
# exit’
max_requests_per_server = 0
}

# MODULE CONFIGURATION
#
# The names and configuration of each module is located in this section.
#
# After the modules are defined here, they may be referred to by name,
# in other sections of this configuration file.
#
modules {
#
# Each module has a configuration as follows:
#
# name [ instance ] {
# config_item = value
# …
# }
#
# The ‘name’ is used to load the ‘rlm_name’ library
# which implements the functionality of the module.
#
# The ‘instance’ is optional. To have two different instances
# of a module, it first must be referred to by ‘name’.
# The different copies of the module are then created by
# inventing two ‘instance’ names, e.g. ‘instance1’ and ‘instance2’
#
# The instance names can then be used in later configuration
# INSTEAD of the original ‘name’. See the ‘radutmp’ configuration
# below for an example.
#

# PAP module to authenticate users based on their stored password
#
# Supports multiple encryption schemes
# clear: Clear text
# crypt: Unix crypt
# md5: MD5 ecnryption
# sha1: SHA1 encryption.
# DEFAULT: crypt
pap {
encryption_scheme = crypt
}

# CHAP module
#
# To authenticate requests containing a CHAP-Password attribute.
#
chap {
authtype = CHAP
}

# Pluggable Authentication Modules
#
# For Linux, see:
# http://www.kernel.org/pub/linux/libs/pam/index.html
#
# WARNING: On many systems, the system PAM libraries have
# memory leaks! We STRONGLY SUGGEST that you do not
# use PAM for authentication, due to those memory leaks.
#
pam {
#
# The name to use for PAM authentication.
# PAM looks in /etc/pam.d/${pam_auth_name}
# for it’s configuration. See ‘redhat/radiusd-pam’
# for a sample PAM configuration file.
#
# Note that any Pam-Auth attribute set in the ‘authorize’
# section will over-ride this one.
#
pam_auth = radiusd
}

# Unix /etc/passwd style authentication
#
unix {
#
# Cache /etc/passwd, /etc/shadow, and /etc/group
#
# The default is to NOT cache them.
#
# For FreeBSD and NetBSD, you do NOT want to enable
# the cache, as it’s password lookups are done via a
# database, so set this value to ‘no’.
#
# Some systems (e.g. RedHat Linux with pam_pwbd) can
# take *seconds* to check a password, when th passwd
# file containing 1000’s of entries. For those systems,
# you should set the cache value to ‘yes’, and set
# the locations of the ‘passwd’, ‘shadow’, and ‘group’
# files, below.
#
# allowed values: {no, yes}
cache = no

# Reload the cache every 600 seconds (10mins). 0 to disable.
cache_reload = 600

#
# Define the locations of the normal passwd, shadow, and
# group files.
#
# ‘shadow’ is commented out by default, because not all
# systems have shadow passwords.
#
# To force the module to use the system password functions,
# instead of reading the files, leave the following entries
# commented out.
#
# This is required for some systems, like FreeBSD,
# and Mac OSX.
#
# passwd = /etc/passwd
# shadow = /etc/shadow
# group = /etc/group

#
# The location of the “wtmp” file.
# This should be moved to it’s own module soon.
#
# The only use for ‘radlast’. If you don’t use
# ‘radlast’, then you can comment out this item.
#
#radwtmp = ${logdir}/radwtmp
#radwtmp = /var/log/radius/radwtmp
}

# Extensible Authentication Protocol
#
# For all EAP related authentications.
# Now in another file, because it is very large.
#
$INCLUDE ${confdir}/eap.conf

# Microsoft CHAP authentication
#
# This module supports MS-CHAP and MS-CHAPv2 authentication.
# It also enforces the SMB-Account-Ctrl attribute.
#
mschap {
#
# As of 0.9, the mschap module does NOT support
# reading from /etc/smbpasswd.
#
# If you are using /etc/smbpasswd, see the ‘passwd’
# module for an example of how to use /etc/smbpasswd

# authtype value, if present, will be used
# to overwrite (or add) Auth-Type during
# authorization. Normally should be MS-CHAP
authtype = MS-CHAP

# if use_mppe is not set to no mschap will
# add MS-CHAP-MPPE-Keys for MS-CHAPv1 and
# MS-MPPE-Recv-Key/MS-MPPE-Send-Key for MS-CHAPv2
#
use_mppe = yes

# if mppe is enabled require_encryption makes
# encryption moderate
#
#require_encryption = yes

# require_strong always requires 128 bit key
# encryption
#
require_strong = yes

# Windows sends us a username in the form of
# DOMAINuser, but sends the challenge response
# based on only the user portion. This hack
# corrects for that incorrect behavior.
#
#with_ntdomain_hack = no
with_ntdomain_hack = yes

# The module can perform authentication itself, OR
# use a Windows Domain Controller. This configuration
# directive tells the module to call the ntlm_auth
# program, which will do the authentication, and return
# the NT-Key. Note that you MUST have “winbindd” and
# “nmbd” running on the local machine for ntlm_auth
# to work. See the ntlm_auth program documentation
# for details.
#
# Be VERY careful when editing the following line!
#
#ntlm_auth = “/path/to/ntlm_auth –request-nt-key –username=%{Stripped-User-Name:-%{User-Name:-None}} –challenge=%{mschap:Challenge:-00} –nt-response=%{mschap:NT-Response:-00}”
}

# Lightweight Directory Access Protocol (LDAP)
#
# This module definition allows you to use LDAP for
# authorization and authentication (Auth-Type := LDAP)
#
# See doc/rlm_ldap for description of configuration options
# and sample authorize{} and authenticate{} blocks
ldap {
server = “127.0.0.1”
# identity = “cn=admin,o=My Org,c=UA”
# password = mypass
basedn = “ou=Radius,”
filter = “(cn=%{Stripped-User-Name:-%{User-Name}})”
# base_filter = “(objectclass=radiusprofile)”

# set this to ‘yes’ to use TLS encrypted connections
# to the LDAP database by using the StartTLS extended
# operation.
# The StartTLS operation is supposed to be used with normal
# ldap connections instead of using ldaps (port 689) connections
start_tls = no

# tls_cacertfile = /path/to/cacert.pem
# tls_cacertdir = /path/to/ca/dir/
# tls_certfile = /path/to/radius.crt
# tls_keyfile = /path/to/radius.key
# tls_randfile = /path/to/rnd
# tls_require_cert = “demand”

# default_profile = “cn=radprofile,ou=dialup,o=My Org,c=UA”
# profile_attribute = “radiusProfileDn”
access_attr = “dialupAccess”

# Mapping of RADIUS dictionary attributes to LDAP
# directory attributes.
dictionary_mapping = ${raddbdir}/ldap.attrmap

ldap_connections_number = 5

#
# NOTICE: The password_header directive is NOT case insensitive
#
# password_header = “{clear}”
#
# Set:
# password_attribute = nspmPassword
#
# to get the user’s password from a Novell eDirectory
# backend. This will work *only if* freeRADIUS is
# configured to build with –with-edir option.
#
#
# The server can usually figure this out on its own, and pull
# the correct User-Password or NT-Password from the database.
#
# Note that NT-Passwords MUST be stored as a 32-digit hex
# string, and MUST start off with “0x”, such as:
#
# 0x000102030405060708090a0b0c0d0e0f
#
# Without the leading “0x”, NT-Passwords will not work.
# This goes for NT-Passwords stored in SQL, too.
#
# password_attribute = userPassword
password_attribute =sn
#
# Un-comment the following to disable Novell eDirectory account
# policy check and intruder detection. This will work *only if*
# FreeRADIUS is configured to build with –with-edir option.
#
# edir_account_policy_check=no
#
# groupname_attribute = cn
# groupmembership_filter = “(|(&(objectClass=GroupOfNames)(member=%{Ldap-UserDn}))(&(objectClass=GroupOfUniqueNames)(uniquemember=%{Ldap-UserDn})))”
# groupmembership_attribute = radiusGroupName
timeout = 4
timelimit = 3
net_timeout = 1
# compare_check_items = yes
# do_xlat = yes
# access_attr_used_for_allow = yes
}

# passwd module allows to do authorization via any passwd-like
# file and to extract any attributes from these modules
#
# parameters are:
# filename – path to filename
# format – format for filename record. This parameters
# correlates record in the passwd file and RADIUS
# attributes.
#
# Field marked as ‘*’ is key field. That is, the parameter
# with this name from the request is used to search for
# the record from passwd file
# Attribute marked as ‘=’ is added to reply_itmes instead
# of default configure_itmes
# Attribute marked as ‘~’ is added to request_items
#
# Field marked as ‘,’ may contain a comma separated list
# of attributes.
# authtype – if record found this Auth-Type is used to authenticate
# user
# hashsize – hashtable size. If 0 or not specified records are not
# stored in memory and file is red on every request.
# allowmultiplekeys – if few records for every key are allowed
# ignorenislike – ignore NIS-related records
# delimiter – symbol to use as a field separator in passwd file,
# for format ‘:’ symbol is always used. ”, ‘n’ are
# not allowed
#

# An example configuration for using /etc/smbpasswd.
#
#passwd etc_smbpasswd {
# filename = /etc/smbpasswd
# format = “*User-Name::LM-Password:NT-Password:SMB-Account-CTRL-TEXT::”
# authtype = MS-CHAP
# hashsize = 100
# ignorenislike = no
# allowmultiplekeys = no
#}

# Similar configuration, for the /etc/group file. Adds a Group-Name
# attribute for every group that the user is member of.
#
#passwd etc_group {
# filename = /etc/group
# format = “=Group-Name:::*,User-Name”
# hashsize = 50
# ignorenislike = yes
# allowmultiplekeys = yes
# delimiter = “:”
#}

# Realm module, for proxying.
#
# You can have multiple instances of the realm module to
# support multiple realm syntaxs at the same time. The
# search order is defined by the order in the authorize and
# preacct sections.
#
# Four config options:
# format – must be ‘prefix’ or ‘suffix’
# delimiter – must be a single character
# ignore_default – set to ‘yes’ or ‘no’
# ignore_null – set to ‘yes’ or ‘no’
#
# ignore_default and ignore_null can be set to ‘yes’ to prevent
# the module from matching against DEFAULT or NULL realms. This
# may be useful if you have have multiple instances of the
# realm module.
#
# They both default to ‘no’.
#

# ‘realm/username’
#
# Using this entry, IPASS users have their realm set to “IPASS”.
realm IPASS {
format = prefix
delimiter = “/”
ignore_default = no
ignore_null = no
}

# ‘username@realm’
#
realm suffix {
format = suffix
delimiter = “@”
ignore_default = no
ignore_null = no
}

# ‘username%realm’
#
realm realmpercent {
format = suffix
delimiter = “%”
ignore_default = no
ignore_null = no
}

#
# ‘domainuser’
#
realm ntdomain {
format = prefix
delimiter = “\”
ignore_default = no
ignore_null = no
}

# A simple value checking module
#
# It can be used to check if an attribute value in the request
# matches a (possibly multi valued) attribute in the check
# items This can be used for example for caller-id
# authentication. For the module to run, both the request
# attribute and the check items attribute must exist
#
# i.e.
# A user has an ldap entry with 2 radiusCallingStationId
# attributes with values “12345678” and “12345679”. If we
# enable rlm_checkval, then any request which contains a
# Calling-Station-Id with one of those two values will be
# accepted. Requests with other values for
# Calling-Station-Id will be rejected.
#
# Regular expressions in the check attribute value are allowed
# as long as the operator is ‘=~’
#
checkval {
# The attribute to look for in the request
item-name = Calling-Station-Id

# The attribute to look for in check items. Can be multi valued
check-name = Calling-Station-Id

# The data type. Can be
# string,integer,ipaddr,date,abinary,octets
data-type = string

# If set to yes and we dont find the item-name attribute in the
# request then we send back a reject
# DEFAULT is no
#notfound-reject = no
}

# rewrite arbitrary packets. Useful in accounting and authorization.
#
#
# The module can also use the Rewrite-Rule attribute. If it
# is set and matches the name of the module instance, then
# that module instance will be the only one which runs.
#
# Also if new_attribute is set to yes then a new attribute
# will be created containing the value replacewith and it
# will be added to searchin (packet, reply, proxy, proxy_reply or config).
# searchfor,ignore_case and max_matches will be ignored in that case.
#
# Backreferences are supported: %{0} will contain the string the whole match
# and %{1} to %{8} will contain the contents of the 1st to the 8th parentheses
#
# If max_matches is greater than one the backreferences will correspond to the
# first match

#
#attr_rewrite sanecallerid {
# attribute = Called-Station-Id
# may be “packet”, “reply”, “proxy”, “proxy_reply” or “config”
# searchin = packet
# searchfor = “[+ ]”
# replacewith = “”
# ignore_case = no
# new_attribute = no
# max_matches = 10
# ## If set to yes then the replace string will be appended to the original string
# append = no
#}

attr_rewrite routeradmin {
attribute = User-Name
searchin = packet
searchfor = “.enab15.”
replacewith = “_enab15_”
append = no
}

# Preprocess the incoming RADIUS request, before handing it off
# to other modules.
#
# This module processes the ‘huntgroups’ and ‘hints’ files.
# In addition, it re-writes some weird attributes created
# by some NASes, and converts the attributes into a form which
# is a little more standard.
#
preprocess {
#huntgroups = ${confdir}/huntgroups
#hints = ${confdir}/hints

# This hack changes Ascend’s wierd port numberings
# to standard 0-??? port numbers so that the “+” works
# for IP address assignments.
with_ascend_hack = no
ascend_channels_per_line = 23

# Windows NT machines often authenticate themselves as
# NT_DOMAINusername
#
# If this is set to ‘yes’, then the NT_DOMAIN portion
# of the user-name is silently discarded.
#
# This configuration entry SHOULD NOT be used.
# See the “realms” module for a better way to handle
# NT domains.
#with_ntdomain_hack = no
with_ntdomain_hack = yes

# Specialix Jetstream 8500 24 port access server.
#
# If the user name is 10 characters or longer, a “/”
# and the excess characters after the 10th are
# appended to the user name.
#
# If you’re not running that NAS, you don’t need
# this hack.
with_specialix_jetstream_hack = no

# Cisco (and Quintum in Cisco mode) sends it’s VSA attributes
# with the attribute name *again* in the string, like:
#
# H323-Attribute = “h323-attribute=value”.
#
# If this configuration item is set to ‘yes’, then
# the redundant data in the the attribute text is stripped
# out. The result is:
#
# H323-Attribute = “value”
#
# If you’re not running a Cisco or Quintum NAS, you don’t
# need this hack.
with_cisco_vsa_hack = no
}

# Livingston-style ‘users’ file
#
files {
usersfile = ${confdir}/users
#acctusersfile = ${confdir}/acct_users
#preproxy_usersfile = ${confdir}/preproxy_users

# If you want to use the old Cistron ‘users’ file
# with FreeRADIUS, you should change the next line
# to ‘compat = cistron’. You can the copy your ‘users’
# file from Cistron.
compat = no
}

# Write a detailed log of all accounting records received.
#
detail {
# Note that we do NOT use NAS-IP-Address here, as
# that attribute MAY BE from the originating NAS, and
# NOT from the proxy which actually sent us the
# request. The Client-IP-Address attribute is ALWAYS
# the address of the client which sent us the
# request.
#
# The following line creates a new detail file for
# every radius client (by IP address or hostname).
# In addition, a new detail file is created every
# day, so that the detail file doesn’t have to go
# through a ‘log rotation’
#
# If your detail files are large, you may also want
# to add a ‘:%H’ (see doc/variables.txt) to the end
# of it, to create a new detail file every hour, e.g.:
#
# …./detail-%Y%m%d:%H
#
# This will create a new detail file for every hour.
#
detailfile = ${radacctdir}/%{Client-IP-Address}/detail-%Y%m%d

#
# The Unix-style permissions on the ‘detail’ file.
#
# The detail file often contains secret or private
# information about users. So by keeping the file
# permissions restrictive, we can prevent unwanted
# people from seeing that information.
detailperm = 0600
}

#
# Many people want to log authentication requests.
# Rather than modifying the server core to print out more
# messages, we can use a different instance of the ‘detail’
# module, to log the authentication requests to a file.
#
# You will also need to un-comment the ‘auth_log’ line
# in the ‘authorize’ section, below.
#
detail auth_log {
#detailfile = ${radacctdir}/%{Client-IP-Address}/auth-detail-%Y%m%d
detailfile = /var/log/radius/reply

#
# This MUST be 0600, otherwise anyone can read
# the users passwords!
detailperm = 0600
}

#
# This module logs authentication reply packets sent
# to a NAS. Both Access-Accept and Access-Reject packets
# are logged.
#
# You will also need to un-comment the ‘reply_log’ line
# in the ‘post-auth’ section, below.
#
detail reply_log {
# detailfile = ${radacctdir}/%{Client-IP-Address}/reply-detail-%Y%m%d
detailfile = /var/log/radius/reply

#
# This MUST be 0600, otherwise anyone can read
# the users passwords!
detailperm = 0600
}
#
# This module logs packets proxied to a home server.
#
# You will also need to un-comment the ‘pre_proxy_log’ line
# in the ‘pre-proxy’ section, below.
#
# detail pre_proxy_log {
# detailfile = ${radacctdir}/%{Client-IP-Address}/pre-proxy-detail-%Y%m%d

#
# This MUST be 0600, otherwise anyone can read
# the users passwords!
# detailperm = 0600
# }

#
# This module logs response packets from a home server.
#
# You will also need to un-comment the ‘post_proxy_log’ line
# in the ‘post-proxy’ section, below.
#
# detail post_proxy_log {
# detailfile = ${radacctdir}/%{Client-IP-Address}/post-proxy-detail-%Y%m%d

#
# This MUST be 0600, otherwise anyone can read
# the users passwords!
# detailperm = 0600
# }

# Create a unique accounting session Id. Many NASes re-use or
# repeat values for Acct-Session-Id, causing no end of
# confusion.
#
# This module will add a (probably) unique session id
# to an accounting packet based on the attributes listed
# below found in the packet. See doc/rlm_acct_unique for
# more information.
#
acct_unique {
key = “User-Name, Acct-Session-Id, NAS-IP-Address, Client-IP-Address, NAS-Port”
}

# Include another file that has the SQL-related configuration.
# This is another file only because it tends to be big.
#
# The following configuration file is for use with MySQL.
#
# For Postgresql, use: ${confdir}/postgresql.conf
# For MS-SQL, use: ${confdir}/mssql.conf
# For Oracle, use: ${confdir}/oraclesql.conf
#
#$INCLUDE ${confdir}/sql.conf

# For Cisco VoIP specific accounting with Postgresql,
# use: ${confdir}/pgsql-voip.conf
#
# You will also need the sql schema from:
# src/billing/cisco_h323_db_schema-postgres.sql
# Note: This config can be use AS WELL AS the standard sql
# config if you need SQL based Auth

# Write a ‘utmp’ style file, of which users are currently
# logged in, and where they’ve logged in from.
#
# This file is used mainly for Simultaneous-Use checking,
# and also ‘radwho’, to see who’s currently logged in.
#
#radutmp {
# Where the file is stored. It’s not a log file,
# so it doesn’t need rotating.
#
#filename = ${logdir}/radutmp
# filename = /var/log/radius/radutmp

# The field in the packet to key on for the
# ‘user’ name, If you have other fields which you want
# to use to key on to control Simultaneous-Use,
# then you can use them here.
#
# Note, however, that the size of the field in the
# ‘utmp’ data structure is small, around 32
# characters, so that will limit the possible choices
# of keys.
#
# You may want instead: %{Stripped-User-Name:-%{User-Name}}
# username = %{User-Name}

# Whether or not we want to treat “user” the same
# as “USER”, or “User”. Some systems have problems
# with case sensitivity, so this should be set to
# ‘no’ to enable the comparisons of the key attribute
# to be case insensitive.
#
# case_sensitive = yes

# Accounting information may be lost, so the user MAY
# have logged off of the NAS, but we haven’t noticed.
# If so, we can verify this information with the NAS,
#
# If we want to believe the ‘utmp’ file, then this
# configuration entry can be set to ‘no’.
#
# check_with_nas = yes

# Set the file permissions, as the contents of this file
# are usually private.
perm = 0600

# callerid = “yes”
#}

# “Safe” radutmp – does not contain caller ID, so it can be
# world-readable, and radwho can work for normal users, without
# exposing any information that isn’t already exposed by who(1).
#
# This is another ‘instance’ of the radutmp module, but it is given
# then name “sradutmp” to identify it later in the “accounting”
# section.
#radutmp sradutmp {
#filename = ${logdir}/sradutmp
# filename = /var/log/radius/sradutmp
# perm = 0644
# callerid = “no”
#}

# attr_filter – filters the attributes received in replies from
# proxied servers, to make sure we send back to our RADIUS client
# only allowed attributes.
attr_filter {
attrsfile = ${confdir}/attrs
}

# counter module:
# This module takes an attribute (count-attribute).
# It also takes a key, and creates a counter for each unique
# key. The count is incremented when accounting packets are
# received by the server. The value of the increment depends
# on the attribute type.
# If the attribute is Acct-Session-Time or of an integer type we add the
# value of the attribute. If it is anything else we increase the
# counter by one.
#
# The ‘reset’ parameter defines when the counters are all reset to
# zero. It can be hourly, daily, weekly, monthly or never.
#
# hourly: Reset on 00:00 of every hour
# daily: Reset on 00:00:00 every day
# weekly: Reset on 00:00:00 on sunday
# monthly: Reset on 00:00:00 of the first day of each month
#
# It can also be user defined. It should be of the form:
# num[hdwm] where:
# h: hours, d: days, w: weeks, m: months
# If the letter is ommited days will be assumed. In example:
# reset = 10h (reset every 10 hours)
# reset = 12 (reset every 12 days)
#
#
# The check-name attribute defines an attribute which will be
# registered by the counter module and can be used to set the
# maximum allowed value for the counter after which the user
# is rejected.
# Something like:
#
# DEFAULT Max-Daily-Session := 36000
# Fall-Through = 1
#
# You should add the counter module in the instantiate
# section so that it registers check-name before the files
# module reads the users file.
#
# If check-name is set and the user is to be rejected then we
# send back a Reply-Message and we log a Failure-Message in
# the radius.log
# If the count attribute is Acct-Session-Time then on each login
# we send back the remaining online time as a Session-Timeout attribute
#
# The counter-name can also be used instead of using the check-name
# like below:
#
# DEFAULT Daily-Session-Time > 3600, Auth-Type = Reject
# Reply-Message = “You’ve used up more than one hour today”
#
# The allowed-servicetype attribute can be used to only take
# into account specific sessions. For example if a user first
# logs in through a login menu and then selects ppp there will
# be two sessions. One for Login-User and one for Framed-User
# service type. We only need to take into account the second one.
#
# The module should be added in the instantiate, authorize and
# accounting sections. Make sure that in the authorize
# section it comes after any module which sets the
# ‘check-name’ attribute.
#
#counter daily {
# filename = ${raddbdir}/db.daily
# key = User-Name
# count-attribute = Acct-Session-Time
# reset = daily
# counter-name = Daily-Session-Time
# check-name = Max-Daily-Session
# allowed-servicetype = Framed-User
# cache-size = 5000
#}

# The “always” module is here for debugging purposes. Each
# instance simply returns the same result, always, without
# doing anything.
#always fail {
# rcode = fail
#}
#always reject {
# rcode = reject
#}
#always ok {
# rcode = ok
# simulcount = 0
# mpp = no
#}

#
# The ‘expression’ module currently has no configuration.
#
# This module is useful only for ‘xlat’. To use it,
# put ‘exec’ into the ‘instantiate’ section. You can then
# do dynamic translation of attributes like:
#
# Attribute-Name = `%{expr:2 + 3 + %{exec: uid -u}}`
#
# The value of the attribute will be replaced with the output
# of the program which is executed. Due to RADIUS protocol
# limitations, any output over 253 bytes will be ignored.
#expr {
#}

#
# The ‘digest’ module currently has no configuration.
#
# “Digest” authentication against a Cisco SIP server.
# See ‘doc/rfc/draft-sterman-aaa-sip-00.txt’ for details
# on performing digest authentication for Cisco SIP servers.
#
digest {
}
exec pppIP {
wait = yes
program = “/pppIP”
input_pairs = request
output_pairs = reply
}
exec RadiusLog {
wait = yes
program = “/RadiusLog”
input_pairs = request
output_pairs = reply
}

#
# Execute external programs
#
# This module is useful only for ‘xlat’. To use it,
# put ‘exec’ into the ‘instantiate’ section. You can then
# do dynamic translation of attributes like:
#
# Attribute-Name = `%{exec:/path/to/program args}`
#
# The value of the attribute will be replaced with the output
# of the program which is executed. Due to RADIUS protocol
# limitations, any output over 253 bytes will be ignored.
#
# The RADIUS attributes from the user request will be placed
# into environment variables of the executed program, as
# described in ‘doc/variables.txt’
#
#exec {
# wait = yes
# input_pairs = request
#}

#
# This is a more general example of the execute module.
#
# This one is called “echo”.
#
# Attribute-Name = `%{echo:/path/to/program args}`
#
# If you wish to execute an external program in more than
# one section (e.g. ‘authorize’, ‘pre_proxy’, etc), then it
# is probably best to define a different instance of the
# ‘exec’ module for every section.
#
#exec echo {
#
# Wait for the program to finish.
#
# If we do NOT wait, then the program is “fire and
# forget”, and any output attributes from it are ignored.
#
# If we are looking for the program to output
# attributes, and want to add those attributes to the
# request, then we MUST wait for the program to
# finish, and therefore set ‘wait=yes’
#
# allowed values: {no, yes}
# wait = yes

#
# The name of the program to execute, and it’s
# arguments. Dynamic translation is done on this
# field, so things like the following example will
# work.
#
# program = “/bin/echo %{User-Name}”

#
# The attributes which are placed into the
# environment variables for the program.
#
# Allowed values are:
#
# request attributes from the request
# config attributes from the configuration items list
# reply attributes from the reply
# proxy-request attributes from the proxy request
# proxy-reply attributes from the proxy reply
#
# Note that some attributes may not exist at some
# stages. e.g. There may be no proxy-reply
# attributes if this module is used in the
# ‘authorize’ section.
#
# input_pairs = request

#
# Where to place the output attributes (if any) from
# the executed program. The values allowed, and the
# restrictions as to availability, are the same as
# for the input_pairs.
#
# output_pairs = reply

#
# When to execute the program. If the packet
# type does NOT match what’s listed here, then
# the module does NOT execute the program.
#
# For a list of allowed packet types, see
# the ‘dictionary’ file, and look for VALUEs
# of the Packet-Type attribute.
#
# By default, the module executes on ANY packet.
# Un-comment out the following line to tell the
# module to execute only if an Access-Accept is
# being sent to the NAS.
#
#packet_type = Access-Accept
}

# Do server side ip pool management. Should be added in post-auth and
# accounting sections.
#
# The module also requires the existance of the Pool-Name
# attribute. That way the administrator can add the Pool-Name
# attribute in the user profiles and use different pools
# for different users. The Pool-Name attribute is a *check* item not
# a reply item.
#
# Example:
# radiusd.conf: ippool students { […] }
# users file : DEFAULT Group == students, Pool-Name := “students”
#
# ********* IF YOU CHANGE THE RANGE PARAMETERS YOU MUST *********
# ********* THEN ERASE THE DB FILES *********
#
#ippool main_pool {

# range-start,range-stop: The start and end ip
# addresses for the ip pool
# range-start = 192.168.1.1
# range-stop = 192.168.3.254

# netmask: The network mask used for the ip’s
# netmask = 255.255.255.0

# cache-size: The gdbm cache size for the db
# files. Should be equal to the number of ip’s
# available in the ip pool
# cache-size = 800

# session-db: The main db file used to allocate ip’s to clients
# session-db = ${raddbdir}/db.ippool

# ip-index: Helper db index file used in multilink
# ip-index = ${raddbdir}/db.ipindex

# override: Will this ippool override a Framed-IP-Address already set
# override = no

# maximum-timeout: If not zero specifies the maximum time in seconds an
# entry may be active. Default: 0
# maximum-timeout = 0
#}

# ANSI X9.9 token support. Not included by default.
# $INCLUDE ${confdir}/x99.conf

#}

# Instantiation
#
# This section orders the loading of the modules. Modules
# listed here will get loaded BEFORE the later sections like
# authorize, authenticate, etc. get examined.
#
# This section is not strictly needed. When a section like
# authorize refers to a module, it’s automatically loaded and
# initialized. However, some modules may not be listed in any
# of the following sections, so they can be listed here.
#
# Also, listing modules here ensures that you have control over
# the order in which they are initalized. If one module needs
# something defined by another module, you can list them in order
# here, and ensure that the configuration will be OK.
#
instantiate {
#
# Allows the execution of external scripts.
# The entire command line (and output) must fit into 253 bytes.
#
# e.g. Framed-Pool = `%{exec:/bin/echo foo}`
#exec

#
# The expression module doesn’t do authorization,
# authentication, or accounting. It only does dynamic
# translation, of the form:
#
# Session-Timeout = `%{expr:2 + 3}`
#
# So the module needs to be instantiated, but CANNOT be
# listed in any other section. See ‘doc/rlm_expr’ for
# more information.
#
#expr

#
# We add the counter module here so that it registers
# the check-name attribute before any module which sets
# it
# daily
}

# Authorization. First preprocess (hints and huntgroups files),
# then realms, and finally look in the “users” file.
#
# The order of the realm modules will determine the order that
# we try to find a matching realm.
#
# Make *sure* that ‘preprocess’ comes before any realm if you
# need to setup hints for the remote radius server
authorize {
#
# The routeradmin module is to handle the Cisco “enable”
# command processed via radius. Cisco routers use the
# username “$enab15$” for radius requests for enable access.
# This module re-writes that username to be “_enab15_”,
# which is what Zeroshell will create when attempting to
# create a local user called “$enab15$”.
routeradmin

#
# The preprocess module takes care of sanitizing some bizarre
# attributes in the request, and turning them into attributes
# which are more standard.
#
# It takes care of processing the ‘raddb/hints’ and the
# ‘raddb/huntgroups’ files.
#
# It also adds the %{Client-IP-Address} attribute to the request.
preprocess

#
# If you want to have a log of authentication requests,
# un-comment the following line, and the ‘detail auth_log’
# section, above.
#auth_log
auth_log

# attr_filter

#
# The chap module will set ‘Auth-Type := CHAP’ if we are
# handling a CHAP requ